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1 Executive summary

Active development proceeded in four of the five defined research topics:

1. Development of statistical methodology

• Implemented Gelman-Rubin parallel chain tests along with avanilla Parallel Chains
class for comparison with tempered schemes

• Implemented generic tempered simulation with a generalized concept of “hot” chains
beyond powering-up the posterior distribution.

• Implemented and tested a posterior distribution representation based on Metric Tree
kernel density estimation.

• Preliminary implementation of an equi-energy sampler.

2. Development of persistence technology

• Re-implemented of serialization and persistence methods based on the standard Boost
C++ libraries. design based on preprocessor macros

• Preliminary tests of serial and parallel versions of the persistence package has been
tested.

• Developed detailed plan for persistent store based on SVN repositories

3. Astronomical applications

• Developed and implemented a GALFIT-like galaxy image analyzer which we have
code-namedGALPHAT for GALaxy PHotometric ATtributes. We found numerous
problems in the commonly used package GALFIT that necessitated a full re-implementation.
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• Developed and implemented semi-analytic method routine. We are in process of charac-
terizing the probabilistic properties of the semi-analytic-method (SAM) process. Mix-
ing and convergence are challenging with SAMs, as anticipated.

• We have implemented a color-magnitude diagramgenerator based on the most recent
isochrone tracks that included the AGB and post-AGB stellarevolution phases. We may
now make start count predictions along any line of sight given a star-formation history,
metallicity distribution in space. We will test both our model and methodology using
2MASS LMC/SMC data before beginning to apply this to galactic problems. This work
was led by post-doc Jörg Colberg.

I will detail some of advances below and end with a list of Milestones for Year 3.

2 Research milestones and summary

1 Persistence subsystem development

This year we completed the conversion of the persistence subsystem of the software (save and
restore of ongoing work). We replaced our home-brewed prototype implementation with one using
the well-documented and supported Boost library for persistence. As we did this, we simplified
what the programmer writes in terms of annotations insertedinto the code for C++ classes, and
replaced the scripts that process annotated code with new, more reliable scripts. While this work
could all be considered just good maintenance, it laid the ground for us to add checkpointing.

Checkpointing goes beyond save/restore in that it saves what is happening in themiddle of a
Markov chain. Running these chains is the most time-consuming part of running the BIE, and thus
the most vulnerable to crashes, etc. Checkpointing allows one to resume after a crash, or if one
needed or desired to abandon a computation for some reason. We can trigger checkpointing based
on the number of iterations since the last checkpoint, the amount of time that has passed, or upon
user request via typing a certain control character on the console.

Finally, we have developed a design for our “lab book” extension of the software. This will
record commands and allow one to go back to any point in the sequence and branch off in a dif-
ferent direction, with all the exploration pathssaved persistently and labeled for possible future
use. Among other things, this supports both good organization of experiments and results and pro-
vides strong evidence of the provenance of those results. Wereviewed various underlying libraries
that could support this work and settled on subversion, a widely available source code versioning
system, that also support versioning of binary data and (important for our application) a standard
library interface. It is also stable, reliable, and well-maintained, and likely to remain so.

2 GALPHAT

2.1 Motivation

The galaxy structure is evolving due to gravitational and gas dynamical physics in the expanding
Universe. To understand the evolution of galaxy structure based on their morphology has been
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done by human eye, which led to the systems in use today such asHubble type. As galaxy sur-
veys have become deeper and more voluminous, researchers have explored a variety of automatic
classification schemes.

We had originally intended to use BIE as a backend for GALFIT . GALFIT is a modular package
written to perform two dimensional image decompositions for galaxies which are from nearby to
distant (Peng et al., 2002). GALFIT takes an input image and outputs a model-subtracted images as
well as a catalog of structural parameters for an arbitrary number of components. Each predefined
component has up to ten parameters but allows for an arbitrary number of user-defined profiles
and components. Some parameters may be fixed depending on one’s application but a typical fit
will require greater than 12 parameters. We found that the pixel integration and PSF convolution
were too inaccurate and time-consuming for our applicationwhich necessitated our rewriting the
model generation code. We have code-named the new parameterdetermination package GALPHAT
for GALaxy PHotomometric ATtributes. Our combination of this approach with our Bayesian
Inference Engine back end, which will allow GALFIT-based investigations of the full posterior not
just the extremum mode, and will establish proper prior distributions, which allow inferences using
Bayes Factors over a wide variety of competing models and hypotheses.

2.2 Bayesian approach for modelling data

For the likelihood function, we construct the likelihood function using models in GALFIT .

P(D | θ) =
exp(−1

2[D−M(θ)]tW[D−M(θ)])

(2π)N pix/2| W |−1/2
(1)

whereD is data vector(Nx ×Ny), M(θ) is a model vector andW is a weight matrix for pixel value.
For the prior for parameters, we mostly adopt the uniform prior with a range(top-hat) which

leads the likelihood dominated posterior probability distribution and basically the same case with
the maximum likelihood method, a least informative case of Bayesian statistics. As we shall see in
later, the effect of prior becomes more significant when we have data where the information is weak
and degenerated. For example, in case of lowS/N data, the informative priors for some parameters
help to obtain the robust estimate for those parameters.

We will give examples below of GALPHAT application in synthetic tests and to 2MASS images.

2.3 Ensemble examples

These examples investigate bias and confidence as a functionof signal to noise ratio (S/N). Here,
S/R is defined as the ratio of photons inside the half-light radius to that of the background inside of
the same radius. The Figure 1 describes the parameter distributions for Sésic indicesn = 1,4,7.5.
Each galaxy has same half-light radius of 10 and axis ratio of1. The figures show the residual
(for magnitude, Sérsic index) or ratio(for half-light radius and axis ratio) of model parameter with
respect to the true input parameter as a function of mean SN. We use 20,000 converged samples and
perform kernel density estimation for estimating the probability density of parameter. The median
value of the estimated parameter is shown (diamond symbol) and the error bars describe the 99.7%
confidence interval.
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(a) n = 1 (b) n = 4

(c) n = 7.5

Figure 1: Sérsic models parameter estimation for a varietyof values S/N along the ordinate. Each
sub panel shows the recovered value of the magnitude, effective radiusRe, axis rationb/a and
index. The diamond symbol indicates and the error bars the 99.7% confidence interval.
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(a) S/N=15 (b) S/N=3

Figure 2: One dimensional marginalized parameter posterior and two dimensional marginalized
joint distribution of model parameters for 4 galaxies from the above sample shown in Figure 1 for
two values of S/N: 15 and 3. The marginalized distribution ofmagnitude, half-light radius, Sérsic
index and axis ratio are shown and contours of their joint distribution are represented 68.5, 95.4
and 99.7% confidence intervals. In 1D marginalized plot, symbols are sample median and bars are
corresponding same confidence interval as the contour level.

One dimensional marginalized parameter posterior and two dimensional marginalized joint dis-
tribution of model parameters for 4 galaxies from the above sample shown in Figure 1 are shown
in Figure 2. In this matrix plot, ”upper off-diagonal” part is for synthetic galaxy with Sérsic index,
1.0 and ”lower off-diagonal” part is for synthetic galaxy with Sérsic index, 4.0. Image size is 200
by 200 and typical wall clock time with AMD Athlon MP 1800+, 1.5GHz is 2 hours for getting
20,000 samples.

2.4 2-component-model examples

Here we describe the results of similar experiments for two component( bulge + disk ) synthetic
galaxies. We generated many galaxies with different bulge to total light ratio (B/T) from 0.1 to 0.8.
Figure 3. Again, we used 40,000 samples with an image size is 200 by 200 and typical wall clock
time with AMD Athlon MP 1800+, 1.5GHz is 7 hours.

Figure 4 shows parameter distribution (c.f. Fig. 1 for the two-component models. This is the
same kind of figure as in 1, but for two components(bulge+disk). I showed residual / ratio of
parameters against to the true input parameters.

2.5 NGC 137, NGC 311, NGC 470

These are examples of 2MASS galaxy image analyses in K band(∼ 10 mag). 40,000 samples are
used for the parameter estimations described in Figure 5.
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(a) 10% bulge, 20% bulge (b) 40% bulge, 50% bulge

(c) 70% bulge, 80% bulge

Figure 3: Marginalized distribution of bulge magnitude, bulge half-light radius, bulge Sérsic index,
bulge axis ratio, disk magnitude, disk half-light radius, disk axis ratio and sky background (see Fig.
2. Each panel describes two bulge fractions. E.g. in the firstpanel the upper off-diagonal part for a
10% bulge fraction and lower off-diagonal part for a 20% bulge fraction.
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Figure 4: Inferred distribution of bulge magnitude, half-light radius, Sérsic index, axis ratio disk
magnitude, half-light radius, axis ratio and sky background for the two-component models as func-
tion of bulge fraction. Each bulge fraction bin is generated10 galaxies with slightly different size
and range of axis ratio/PA. All disk components have mean SN=3 and bulge SN spans from∼ 12
to ∼ 27. The box and whisker symbols are as follows: the box coversfrom 25% to 75% quantile
of ensemble of data from 10 galaxies and whiskers are min and max of data. Symbols in each box
correspond median of data.

2.6 Conclusions

1. GALPHAT recovers input parameters for modest signal-to-noise ratio with little bias and
performs remarkably well for low signal-to-noise ratio.

2. Similarly, multiple component inferences correctly do not reject input parameters in the pres-
ence of degeneracies, an important and satisfying confirmation of the methodology.

3. Models may be productively compared usingBayes Ratios.

4. Preliminary tests show that GALPHAT parameter determination agrees with GALFIT anal-
yses, converge quickly, and provide robust confidence intervals from the full posterior distri-
bution while diagnosing degeneracies.

3 SAMS–BIE

Semi-Analytic Models (SAMs) have been extensively used to study the formation and evolution of
galaxies (e.g. Kauffmann et al., 1999; Somerville and Primack, 1999; Cole et al., 2000). In SAMs,
one starts with a catalog of merger trees which describe the assembly of individual dark matter
halos, and all other additional physical processes, e.g. gas cooling, star formation and feedback,
AGN, galaxy mergers, etc., are also added into SAMs through empirical functions. As previously
described, we have developed sophisticated programs to generate the merger trees using Monte-
Carlo methods. For a given halo massM2 at a given redshiftz2, we calculate the conditional
probability for such a halo having a progenitor with with mass M1 < M2 at an earlier redshiftz1.
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(a) NGC 137 (b) NGC 311

(c) NGC 470

Figure 5: Parameter estimation for 2MASS K-band images as labeled. Each panel shows the image
(upper left) and model (upper right), along with the absolute residual image (lower left) and an
edge-on wire-frame representation of relative residual image (lower right). In general, residual is
less than 1% but spiky feature in the central region show maximum∼ 4% relative difference in the
case of NGC1 470.
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We generate random numbers according to the conditional probability to allocate progenitor halo
masses.

In the binary tree without accretion, at each time step a haloeither splits into two progenitors or
does not fragment but retain its mass. In practice, to make the Monte-Carlo method more efficient,
we change variables. Instead of redshift and mass, we chooseω ≡ δc(z) = δc,0/D(z) as our time
variable, andS(M) ≡ σ2(M) as our mass variable. The probability for taking a new step∆S in a
time-step∆ω is

P(∆S,∆ω)d∆S =
1√
2π

∆ω
(∆S)3/2

exp

[

−(∆ω)2

2∆S

]

d∆S. (2)

If we make a change in variables further,x ≡ ∆ω/(2
√

∆S), the variablex becomes a Gaussian
distribution with zero mean and unit variance. By generating a Gaussian random number, we
produce a new mass for one of the two progenitor halos and the rest mass if any is assigned for the
other progenitor.

3.1 Current results

We have found that our Bayesian SAM model, BIE-SAM convergences quickly for a small number
of free parameters but poorly for a large number of free parameters typical of real-world SAMs.
This behavior was anticipated, motivated the proposed application, and further underlines the im-
portance of sound probabilistic methodology for cosmological and galaxy formation applications.
These difficulties have motivated us to collaborate with a Michael Lavine (probabilist/statistician
formally at Duke now at UMass) to develop hybrid MCMC schemesappropriate for our high-
dimensional, poor-mixing situation.

We illustrate degenerate and under-constrained SAMs from converged BIE-SAM run with 8 free
parameters1 The free parameters are

1. the cut-off halo mass for radiative cooling,

2. the amplitude for the star formation efficiency law,

3. the power index for the star formation efficiency halo massdependence law,

4. the total supernova feedback energy fraction

5. the amplitude for supernova reheating law

6. the power index for the supernova reheating halo mass dependence law,

7. the fraction of the reheated gas ejected

8. the galaxy merging timescale in terms of the dynamical friction timescale (equivalent to
1/ lnΛ).

1“Real-world” SAM problems often have> 20 parameters.
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Figure 6: The marginalized posterior on the
cooling cut-off halo mass and the merging
timescale plain. The color coded contours
correspond to 95, 90, 70, 50, 30, 10, and 5
percent confidence level.

Figure 7: The marginalized posterior on the
amplitude of the star formation efficiency
and the power index of the star formation ef-
ficiency halo mass dependence law. These
two parameters are mildly degenerate under
the constrain of the stellar mass function.

We use the observed stellar mass function to constrain the model. Some parameters, cooling cut-off
and merging timescale for instance, are well constrained, but some parameters show degeneracy,
and some parameters are not constrained at all. We used differential evolution MCMC algorithm
with 128 chains for more than 6000 iterations. The posteriorwith 2 outliers removed satisfies the
Gelman-Rubin test with (̂R < 1.2). Figures 6–10 describe the results.

4 Star count analyses

With deep data sets of asymptotic giant branch (AGB) stars from both the Large and the Small
Magellanic Cloud (LMC and SMC, respectively), it should be possible to model the structure of
these galaxies using theoretical models for such stars. TheLMC and SMC provide a nice laboratory
for such studies, especially since galactic extinction towards the Clouds is extremely small and
AGB stars are very bright, so the galaxies are well resolved observationally. As input data (prior)
for the Bayesian Inference machinery, color–mmagnitude diagrams (CMDs) have to be produced,
which are based on observed and theoretical stellar properties and on a model of the structure of
the galaxies.

4.1 Generating CMDs from Isochrones

Up until now, the work has focused on generating CMDs from sets of theoretical isochrones, avail-
able at five different metallicities, which are described inCioni et al. (2006). Generating these
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Figure 8: The marginalized posterior on the
amplitude of supernova reheating and the
power index of the supernova reheating halo
mass dependence law. These parameters
are not well constrained by the stellar mass
function.

Figure 9: The predicted stellar mass func-
tion (red) by a parameter set randomly se-
lected within the 10 percent confidence re-
gion compared with observation (black).
The flat faint-end and the steep massive-end
are well reproduced.

Figure 10: The predictedg− r color-magnitude diagram with the same model parameter set.The
diagram is far from observations.
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CMDs requires a sequence of interpolations (in stellar mass, metallicity, and age) to produce a
realistic input–data set (the prior) for the Bayesian Inference machinery.

Apart from the isochrones, star–formation rate (SFR) histories (SFRHs) and age–metallicity
relations (AMRs) have to be provided – these are take from Pagel & Tautvaisiene (1998) and
especially the more detailed and recent work of Carrera et al. (2008).

Given the shapes of the isochrones of the stars of interest here, they had to treat them with special
care, in order to ensure that the interpolations between neighboring isochrones would use the same
evolutionary stages of stars. This process proved to be extremely tedious and time–consuming as it
could only be automated in part and required inspection by hand for each of the isochrones.

In addition to an SFRH and AMR, an initial mass function (IMF)has to be provided. Following
Cioni et al. (2006), we assume it to be independent of age and equal to the log–normal function of
Chabrier (2001)2.

4.2 Example CMDs

In Figure 11, we show four simulated CMDs for four different models. The top row contains simple
toy models, which assume a fixed metallicity (Z = 0.008) and exponentially increasing (panel a)
and exponentially decreasing SFRHs (panel b).

The bottom row shows two realistic models, both of which use input data based on observational
data of the SFRH and on theoretical modeling of the AMR. Panelc uses the observed SFRH (Car-
rera et al. 2008, their Figure 17) and the bursting–model AMRby Pagel & Tautvaisiene (1998) for
an LMC bar field. Panel d uses the observed SFRH (Carrera et al.2008, their Figure 17) and the
closed–box model (y = 0.008) by Carrera et al. (2008; see their Figure 18) for an LMC disk field.

3 Milestones for Year 3

1. Statistical & MCMC development
Continued testing and exploration of novel techniques for rapid improvement of mixing and
convergence for high-dimensional complex posterior distributions typical of real-world as-
tronomical problems.

We hope to provide qualitative suggestions and wisdom for choosing various MCMC algo-
rithms and diagnostic procedures. A paper describing the features and use of the BIE is in
preparation.

2. Persistence subsystem

We anticipate a working implementation of our persistence subsystem by the end of July
2008. This will support recording computations and the relationships between inputs and
outputs, in a research log, so that one can always go back and determine the origin of data
and how it was processed, replaying from a previous state, but with different commands or

2And just like Cioni et al. (2006) we find that the LMC CMDs generated with our code do not depend on the
detailed shape of the IMF.
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Figure 11: Simulated CMDs for different models. Top row: Fixed metallicityZ = 0.008 (con-
stant AMR) with exponentially increasing SFR (panel a), exponentially decreasing SFR (panel b).
Bottom row: Assuming observed SFRH (Carrera et al. 2008) andbursting–model AMR of Pagel
& Tautvaisiene (1998) for LMC bar field (panel c) and observedSFRH (Carrera et al. 2008) and
y = 0.008 closed–box model AMR from Carrera et al. (2008) for LMC disk field (panel d).
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parameters—what we callwhat-if exploration. One can always go back to some previous
time or step and compute forward in new directions, and checkpointing and recovery.

3. BIE–GALFIT
We are currently testing idealized data sets and benchmarking the efficiency of BIE in hy-
pothesis testing. During Year 3, we anticipate moving on to inference on real astronomical
data and publications demonstrating the methods and application. In addition, we are cur-
rently implementing computational optimizations that will allow production analysis. We
anticipate a full-up stand-alone version of BIE to be released to the public in the upcoming
year. Two papers are currently in preparation; we anticipate two more in the upcoming year.

4. Semi-analytic models
We will continue to improve the performance of our SAM implementation and test its perfor-
mance and develop hybrid MCMC algorithms to expedite mixing. In Year 3, we plan to apply
the Bayes Factor methodology to test specific hypotheses about the importance of various pa-
rameters in the underlying physical mechanisms or used to test the effect of different physical
hypotheses, i.e., different parameterizations and combinations of physical processes, without
the constraint that their prescriptions be nested. We have begun discussions with other SAM
practitioners hope to test BIE with their codes as well. We have two papers in the planning
outline stage and anticipate submission by the end of the calendar year 2008.

5. Star-count analyses
Writing and testing the code to generate model CMDs is almostcomplete, with only minor
further testing required (this part of the project will be finished before the end of July 2008).

As a next step, the code to generate the CMDs will have to be incorporated into the existing
Bayesian Inference Estimation (BIE) code. There already exist modules in that code that
produce very simple CMDs, and adding the new code to the BIE code should be straightfor-
ward, hopefully requiring only minor work. We expect this work, including the necessary
test phase, to be done by the end of August 2008.

At that stage, the machinery is production ready, and we willstart to model the structure of
the LMC, anticipating first results by mid–October 2008. Given applying the code to other
galaxies requires no additional work other than modeling those galaxies’ structure, we will
extent the LMC work to the SMC and, very possibly, to other close–by galaxies, to conclude
these studies by early 2009.
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